Kegagalan Analisis Laporan Keuangan Dalam Memprediksi Kebangkrutan BPR/BPRS di Indonesia

Suwandi - Miskak
| Abstract views: 316 | views: 165

Abstract

Since LPS operated in 2005 until 2017, LPS has liquidated 84 BPR/BPRS which were declared as failed banks by BI/OJK. The cause of the failure of the BPR/BPRS is that the bank cannot meet the minimum capital adequacy ratio (CAR) due to losses suffered by the bank. The bank losses are caused fraud by owner, management and employees. Losses are recognized in the financial statements after it found by BI/OJK. We forecast quarterly CAR data before a BPR/BPRS is determined as a bank under special supervision to determine the ability of CAR data prediction whether the bank will be placed as a bank under special supervision using ARIMA. The research result shows the difference between forecasting CAR and actual CAR is significant. This means that CAR data calculated based on financial statements cannot predict the BPR/BPRS will be determined as a bank under special supervision, which in turn has the potential to become a failed bank.

Keywords

ARIMA; CAR; failed bank; forecasting; fraud; good corporate governance

Full Text:

476

References

Aryati T, B. S. (2007). Analisis Faktor yang Mempengaruhi Tingkat Kesehatan Bank dengan Regresi Logit. Journal The WINNERS 8(2), 111-125.

Bank Indonesia. (1997). Surat Keputusan DIreksi Bank Indonesia No. 30/12/KEP/DIR tentang Penilaian Tingkat Kesehatan Bank Umum. Retrieved from https://www.ojk.go.id/Files/batchen2/20.pdf

Bank Indonesia. (2007). Peraturan Bank Indonesia Nomor No.9/17/PBI/2007 tentang Penilaian Tingkat Kesehatan Bank Umum. Retrieved from https://www.ojk.go.id/Files/batchen2/20.pdf

Bank Indonesia. (2013). Peraturan Bank Indonesia Nomor No.13/1/PBI/2011 tentang Penilaian Tingkat Kesehatan Bank Umum. Retrieved from https://www.ojk.go.id/Files/batchen2/20.pdf

Konstituanto, A. (2012). Probabilitas Kegagalan Bank dari Aspek Manajemen dan Keuangan. Bogor: Institut Pertanian Bogor.

Ohlson, J. A. (1980). Financial Ratios and The Probabilistic Prediction of Bankcruptcy. Journal of Accounting Research, 18, 109-131.

Otoritas Jasa Keuangan. (2017). Peraturan Otoritas Jasa Keuangan Nomor 19/POJK.03/2017. Retrieved from https://www.ojk.go.id/id/kanal/perbankan/regulasi/peraturan-ojk/Documents/Pages/POJK-tentang-Penetapan-Status-dan-Tindak-Lanjut-Pengawasan-Bank-Perkreditan-Rakyat-dan-Bank-Pembiayaan-Rakyat-Syariah/SAL%20POJK%2019%20-%20Exit%20Policy%20BPR%BPRS.pdf

Outtecheva, N. (2007). Corporate Financial Distress: An Empirical Analysis of Distress Risk. Swiss: University of St.Gallen.

Pranowo, K., Achsani, N. A., Manurung, A. H., & Nuryantono, N. (2010). Determinant of Corporate Financial Distress in an Emerging Market Economy: Empirical Evidence from the Indonesian Stock Exchange 2004-2008. International Research Journal of Finance and Economics. Issue 52, 80-88.

Singh, K., & Singh, P. (2014). Early warning signals of merger of banks- a case study of global trust bank (GTB) and centurion bank of Punjabi (CBOP) in India. International Journal of Financial Management. 4(4), 49-55.

Whitaker, R. (1999). The Early Stages of Financial Distress. Journal of Economics and Finance. 23(2), 123-132.

Wibowo, B. (2017). Metode Pengukuran Probabilitas Kebangkrutan Bank dan Analisis Hubungannya Dengan Diversifikasi Sumber Pendapatan: Kasus Perbankan Indonesia. Jurnal Manajemen, Strategi Bisnis dan Kewirausahaan. 11(1), 52-66.

Wilopo. (2006). Analisis Faktor-Faktor yang Mempengaruhi Kecenderungan Kecurangan Akuntansi. Simposium Nasional Akuntansi X.

Wruck, K. H. (1990). Financial Distress, Reorganization, and Organizational Efficiency. Journal of Financial Economics. 27(2), 419-444.

Copyright (c) 2020 Kajian Ekonomi dan Keuangan
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.